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Bedeutung zuzukommen als ihre formale Definition 
erkennen liisst. 

Ich danke  dem Hochschul rechenzent rum der Uni- 
versitiit F rankfur t  f/ir Rechenzeit  an der DEC 1091, 
mit der die umfangreicheren Rechnungen ausgef/ihrt 
wurden. 
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Abstract 

Topological  analysis  of  crystal  structures is used for 
s tudying the topological  symmet ry  of  complex ionic 
compounds .  Such analysis  can show either that  the 
topology of  the a r rangement  will not  allow the structure 
to be described in a more highly symmetr ic  space group 
or that  the crystall ine ar rangement  would allow a 
higher symmetry .  In the first case the analysis  gives a 
p roof  that  the structure is already described in the 

0108-7681/83/060669-06501.50 

highest admissible space group. In the second case the 
diffraction evidence must  be evaluated in order to 
ascertain whether  or not  a higher space-group sym- 
metry  is actual ly realized. A topological  analysis  o f  
various complex compounds  shows that  a dist inction 
should be made  between those which are only 
topological ly  complex and those which are both  
topological ly and geometrical ly complex. Pauling 's  rule 
V, the rule of  pars imony,  is shown to be of  limited value 
in its applicat ion to complex ionic compounds .  

© 1983 International Union of Crystallography 
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Introduction 

Topological analyses of crystal structures are useful for 
detecting similarities or differences between them. They 
can be of help in classifying structures of different 
symmetries and stoichiometries. For example, when the 
structure of cubic SiP20 7 was solved (Tillmanns, 
Gebert & Baur, 1973) the question arose whether or 
not the cubic phase was simply a highly symmetric 
version of one of the monoclinic polymorphs of SiP207. 
The question could be answered by describing all three 
forms as three-dimensional nets (Wells, 1977, 1979). 
Since cubic SiP20 7 was found to be based on a net 
consisting entirely of 5-gons while the monoclinic forms 
are composed of 4-, 5- and 6-gons the monoclinic 
phases cannot be lower-symmetry distortions of the 
cubic structure. On the other hand, cubic SiP20 7 is 
based on the same type of net as SiP 2; that is, it has the 
same topology. Both structures share the topology of 
the pyrite-type net (Wells, 1977). 

Another potential application of topological analysis 
lies in the checking of structures of low symmetry for 
the possible presence of higher symmetries. Marsh & 
Schomaker (1979), Herbstein & Marsh (1982) and 
Marsh & Herbstein (1983) have shown that a 
surprisingly large number of recent crystal structure 
determinations were performed in space groups of 
unnecessarily low symmetry. Many of the cases 
discussed by these authors involve the assumption of a 
wrong Laue group, a case which does not reveal itself 
by singularities in the least-squares refinement. A 
thorough topological analysis of a low-symmetry 
structure can give an indication whether or not the 
topology of the structure would admit of a higher 
symmetry. If the topology does not allow a higher 
symmetry the case is settled. Otherwise one has to 
search the diffraction data for evidence of the occur- 
rence of a more highly symmetric space group. 

Topological analysis of crystalline environments 

Based on single-crystal and X-ray powder patterns 
O'Bryan, Grodkiewicz & Bernstein (1980)reported for 
Ba2TigO20 a monoelinie cell with a possible space group 
P21/m and a = 14.815 (5), b = 14.283 (6), c = 
7.109 (2)/1,, p = 98.37 (7) ° and V = 1488.6/t~3. The 

_ 

crystal structure of Ba2Tig020 was recently solved 
and found to be triclinic in space group P1 with a -- 
7.471(1), b = 14.081(2), c = 14.344(2)A, tx = 
89.94 (2), // = 79.43 (2),),  = 84.45 (2) ° and V = 
1476.2 A 3 (Tillmanns, Hofmeister & Baur, 1983). The 
residual for 3301 observed reflexions is R = 0.03. No 
obvious relationship between the two different sets of 
cell constants was found. Was the relationship over- 
looked and is the structure of Ba2TigO20 not truly 
triclinic? 

The structure consists of hexagonally closest packed 
layers of Ba and O atoms stacked in the sequence 
(hch)3 along b*. All the Ti atoms reside in octahedral 
interstices Of this closest packing. The various Ti 
coordination octahedra share only corners and edges 
with each other; face sharing does not occur. One half 
of the Ba atoms are twelve coordinated by O atoms, the 
other half are eleven coordinated. The eleven co- 
ordination is caused by one O-atom vacancy located 
between a pair of Ba atoms in the same row of the 
close-packed arrangement. The 40 crystallographically 
independent O atoms in the unit cell are three- to 
five-coordinated by Ba and Ti atoms. Because of the 
varying numbers of contacts of the O atoms to each of 
the three types of cations (Ba t11], Ba t121, Ti t61) there are 
at least eleven topologically different O atoms present 
in Ba2TigO20 (see Table 1). One could try to analyze 
the topology of this structure in terms of a net 
description. However, nets with many 12-, 11- and 
6-connected nodes would be unwieldy. 

Therefore we began by studying just one type of 
nodes, namely the ones at the Ti atoms. In Table 2 we 
list the types of O atoms (as defined in Table 1) 
surrounding each of the Ti atoms. We see that there are 
15 different Ti-atom environments present in 
Ba2TigO20. Twelve of the Ti atoms are unique in each 
having different numbers and types of O atoms which 
surround them. Three arrangements occur in topo- 
logically equivalent pairs: Ti(2) with Ti(5), Ti(3) with 
Ti(4), and Ti(8) with Ti(16). We call two Ti co- 
ordination octahedra topologically equivalent when all 
of their coordinating O atoms have themselves identi- 
cal coordination environments. The correspondence 
can be either direct or by enantiomorphism. We could 
have distinguished in addition the relative spatial 
orientations of the cations around the O atoms or else 

Table 1. Coordination environments of the eleven 
different O-atom types in Ba2Ti9020 

Also given are the coordinat ion numbers  (CN),  the sums of  bond 
strengths at the O a toms  [p(O):  Pauling (1929); Baur (1970)] 
and the mean O - T i  distances f rom the O a toms  to their surround-  
ing Ti atoms.  

N u m b e r  
o f  such 

Label  a toms  

A 3 
B I 
C 5 
D 5 
E 1 
F 7 
G 2 
H 12 
I 1 
J 1 
K 2 

N u m b e r  of  
neighbors 

p(O) (O-Ti) . . . .  
Ti Ba t111 Ba tl21 C N  (v.u.) (A) 

2 0 I 3 1.500 1.839 
2 1 0 3 1.515 1.832 
2 0 2 4 1.667 1.892 
2 1 1 4 1.682 1.869 
2 1 2 5 1.848 1.884 
3 0 0 3 2.000 1.969 
3 0 1 4 2.167 1.982 
3 1 0 4 2.182 2.012 
3 1 1 5 2.348 2-017 
4 0 1 5 2.833 2-121 
4 1 0 5 2.848 2.115 
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Table 2. Ti-atom environments in Ba2Ti902o character- 
ized by the different kinds of 0 atoms coordinating 

them 

The labels o f  the O-atom types are defined in Table 1. 

O-a tom types 

Ti(1) A D F 
Ti(2) 2F 
Ti(3) D 2F 
Ti(4) D 2F 
Ti(5) 2F 
Ti(6) 2.4 D 
Ti(7) A D F 
Ti(8) 3F 
Ti(9) F 
Ti(10) A C 
Ti(l 1) 2C 2D E 
Ti(12) B C 
Ti(13) 2C D E 
Ti(14) B 2C 
Ti(15) C 2D F 
Ti(16) 3F 
Ti(17) 2F 
Ti(18) A C F 

G 
2G 

3H 
4H 
3H 
3H 
4H 
3H 
2H 
3H 
2H 

H 
H 

3H 
3H 

2K 
J K 
J 
J K 

I 
K 

I 

K 
J 2K 

the O atoms around the Ti atoms. In this instance we 
did not do so because we could decide the case without 
going into that much detail. 

In space group P21/_m the general equivalent position 
is fourfold, while in P1 it is twofold. Therefore, all Ti 
atoms in the triclinic description should occur in 
topologically equivalent pairs and not just six of them if 
the true space group of Ba2Ti9020 were P2~/m. 
Actually the argument can be extended to all mono- 
clinic space groups with a center of symmetry because 
they are all at least of rank four. We also can exclude 
all noncentrosymmetric monoclinic space groups be- 
cause the triclinic structure has a center of symmetry. 
Naturally symmetries higher than monoelinic are also 
excluded. 

Without looking at the details one could argue that 
the twelve unique Ti atoms might all be located on 
symmetry elements in a more highly symmetrical space 
group. However, this is contradicted by the environ- 
ment of Ti(12) which is coordinated by six topo- 
logically different O atoms. Consequently Ti(12)must 
be in a general position in any higher symmetry group. 
Since Ti(12) is not paired (Table 2) with any other Ti 
atom we can again exclude all higher symmetries. The 
only pairing occurs with the centrosymmetrically 
related other Ti(12) atom in J33~. Therefore, we see that 
Ti(12) is not symmetrically related by a mirror plane, a 
glide plane, a twofold axis or a 21 axis to any other Ti 
atom in any higher symmetric cell of a volume equal to 
the triclinic cell. That the primitive cell does not 
correspond to a larger centered cell can be ascertained 
by inspection of the Niggli matrix (International 
Tables for X-ray Crystallography, 1969). Thus we 
conclude that the topological symmetry of Ba2Ti9020 is 
so low that its structure cannot be of any symmetry 

higher than Pi .  By topological symmetry we mean the 
highest symmetry which can be attained by a crystal 
structure given a certain topology of the eonnexions of 
its bonds. In Megaw's (1973) nomenclature we would 
say that Ba2Ti9020 is already an aristotype and not a 
hettotype which could possibly attain a higher crys- 
tallographic symmetry. The term 'topologic symmetry' 
was previously used in the discussion of framework 
silicates (see Gottardi, 1979, and literature cited 
therein); for a definition see Klee (1979). 

Another example of the application of a topological 
analysis is the triclinic structure (P1) of Cu2Li2P~O~s 
(Laiigt & Durif, 1974). The authors of this structure 
determination remark on the presence of a pseudo- 
mirror plane in the P~Ola ring. In addition there are 
similarities in cell constants (b _ c; fl _ y). The 
topological analysis, however, shows clearly that the 
ring is topologically triclinic. It contains two O atoms 
[O(E22) and O(E52)] which are topologically unique 
and are not located in the pseudo-mirror plane. This is 
obviously a case where a further search for a possible 
higher symmetry ispointless. 

So far we have been talking about the topology of 
arrangements of primary bonds. There is no reason not 
to include more distant connexions, say between atoms 
in different molecules. As an example we can take the 
crystal structure of KB(SO3C1) 4 which was described 
by Mairesse & Drache (1978) in space group P1. Marsh 
& Schomaker (1980) showed that the structure can be 
described equally well in space group Ce. The 
two crystallographically independent molecules 
KB(SOaC1)4 in the triclinic description become crystal- 
lographically identical in the monoclinic setting. A 
topological analysis of the original triclinic structure 
taking into account intermolecular approaches shows 
that the two molecules are not only internally identical 
but that all of their intermolecular contacts are 
identical as well (compare Table 3 of Mairesse & 
Drache, 1978). Any case in which even the non- 
bonding distances for independent molecules agree with 
each other should alert the crystallographer to the 
possibility of a higher symmetry. Thus the topological 
analysis can also be applied to structures of organic or 
metalloorganic molecular compounds. 

When a centrosymmetric structure is refined in a 
noncentrosymmetric space group then atoms which are 
paired in the centrosymmetric case, but independent in 
the lower-symmetry description, can have positional 
errors amounting to about 0.2 A. In order to avoid 
mistakes in the topological description resulting from 
such scatter in the bond lengths it is advisable to be 
generous in the inclusion of bonding contacts. In the 
case of Ba2Ti9020 we called bonds all those T i - O  
distances ranging from 1.75 to 2.32/~, and all the 
B a - O  distances from 2.75 to 3.21/~. It is also useful 
to compare the bond lengths of topologically equivalent 
bonds with each other. In the case of Zn3(BO3) 2 the 
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scatter of topologically equivalent Z n - O  bonds (1.86 
to 2.13/~) and B - O  bonds (1.22 to 1.54/~) indicated 
that the original description in I c  was wrong and that 
the structure could actually be described in space group 
I 2 / c  (Baur & TiUmanns, 1970). On the other hand, the 
large scatter in cation-O bond lengths in Ba2Ti9020 
can be explained by the different topologic environ- 
ments of the various O atoms. As a matter of fact there 
is usually a strong correlation between the sum of the 
bond strengths received by an anion (which in turn is 
based on the topology of its surroundings) and the 
lengths of the bonds it forms to its neighbors (Table 
1). Such correlations can be exploited for the prediction 
of bond lengths (Baur, 1981). The comparison of 
observed and predicted bond lengths is another 
diagnostic tool useful for judging the correctness of 
published structures. 

The approach we take is topologic inasmuch as the 
length of a T i -O  distance which we consider to be a 
bond does not matter as long as it is in the usually 
observed range between 1.6 and 2.5/~. However, if a 
distance Ti--O is clearly longer, let us say 3.0 A_, we 
would not consider it to be a bonding contact. Thus far, 
crystal-chemical experience imposes a metric limitation 
on the topologic analysis. 

Topological and geometrical complexity 
In Ba2Ti9020 we have eleven topologically different 
types among the 40 crystallographically unique O 

atoms. The corresponding ratio for Ti is 15 of 18, for 
Ba four of four. In total there are 30 essentially 
different kinds of atoms among the 62 crystal- 
lographically distinguishable atoms in one unit cell of 
Ba2Ti9020. Pauling's (1929) rule V, the rule of 
parsimony, states: 'The number of essentially different 
kinds of constituents in a crystal tends to be small'. In 
the light of this rule is Ba2Ti9020 parsimonious or 
lavish? 

In order to answer this question we have analyzed 
topologically the atomic environments in a number of 
crystal structures. Within one cationic species we 
regarded as essentially different constituents cations 
with different coordination numbers. Therefore, for 
instance, in K2MgsSil2030 the Kfl21,KtgI,Mg~41,Mg r61 
and Si t41 are all counted as being different (the 
coordination numbers are given as superscripts in 
square brackets). Since each crystallographically 
unique O atom in this compound is surrounded differ- 
ently by the cations we have a total of eight topo- 
logically distinct (t-- 8) atomic species in the asymmetric 
unit, as compared with eight crystallographically dif- 
ferent constituents (c = 8) and four different chemical 
elements (e = 4). We now define a topological 
parsimony index as I t = (t - e) / t .  For a completely 
parsimonious structure I t tends to a limiting value of 
zero. An example for that is the sodium chloride type 
(Table 3). In contrast, K2MgsSi~203o with I t = 0.50 is a 
relatively lavish structure. The entries in Table 3 are 

Table 3. P a r s i m o n y  i n d i c e s  [I  t = (t  - e ) / t  a n d  I c = (c - e)/c] f o r  a n u m b e r  o f  s e l e c t e d  c r y s t a l  s t r u c t u r e s  

In addition are given the number of crystallographieally unique atoms per asymmetric unit (c), the number of topologically different atomic 
species per asymmetric unit (t) and the number of different chemical elements per compound (e). References to older work are given by 
volume and page numbers of Wyckoff (1963): W, 1; Wyckoff (1964): W, 2; and Wyckoff (1968): W, 4. 

Structure c t e " I t I~  Reference 

Ba2TigO20 62 30 3 0.90 0.95 Tillmanns, Hofmeister & Baur (1983) 
Ba6Til~O40 34 27 3 0.89 0.91 Tillmanns & Baur (1970) 
Ba4Tit303o 15 13 3 0.77 0.80 Tillmanns (1982) 
BaTi6Ol3 20 12 3 0.75 0.85 Tillmanns (1972) 
Cu2Li2P6018 28 15 4 0.73 0.86 Laiigt & Durif (1974) 
BaTisOtl 17 7 3 0.57 0.82 Tillmanns (1969) 
Ca2MgsSi8022(OH) 2, tremolite 13 11 5 0.55 0.62 W, 4, 304 
K2MgsSi~203o 8 8 4 0.50 0.50 Khan, Baur & Forbes (1972) 
SisAlt302o(OH)tsC1, zunyite 10 9 5 0.44 0.50 W, 4, 434 
K(A1,Si)408, sanidine 8 5 3 0.40 0.60 W, 4, 450 
KB(SO3CI) 4 22 8 5 0.38 0.77 Marsh & Schomaker (1980) 
Ba(Ti,Pt!O 3, hexagonal 6 6 4 0.33 0.33 Fischer & Tillmanns (1981) 
CaMgSi206, diopside 6 6 4 0.33 0.33 W, 4, 295 
ZrO 2, baddeleyite 3 3 2 0.33 0.33 W, 1, 243 
KAI2(A1Sia)Ot0(OH) 2, muscovite 10 6 5 0.17 0.50 W. 4, 346 
SiP207, cubic 50 3 3 0.00 0.94 Tillmanns, Gebert & Baur (1973) 
SiO 2, meteoritic tridymite 36 2 2 0.00 0.94 Dollase & Baur (1976) 
Na2MgSiO4 16 4 4 0.00 0.75 Baur, Ohta & Shannon (1981) 
SiO 2, coesite 7 2 2 0.00 0.71 W, 1, 321 
BaTiO 3, hexagonal 6 3 3 0.00 0.50 W, 2, 414 
Mg2SiO 4, olivine 6 3 3 0.00 0.50 W, 4, 159 
SiO 2, high-temp, tridymite 3 2 2 0.00 0.33 W, 1, 316 
BaTiO 3, cubic 3 3 3 0.00 0.00 W, 2, 390 
TiO2, futile 2 2 2 0.00 0.00 W, 1, 251 
NaC1 2 2 2 0.00 0.00 W, 1, 85 



WERNER H. BAUR, EKKEHART TILLMANNS AND W O L F G A N G  HOFMEISTER 673 

arbitrarily selected from well known structure types and 
from our own experience. 

Whenever one tries to express a complex 
phenomenon by a single measure as we are doing here 
with the parsimony index it certainly is possible to do 
so in many different ways. Actually we considered 
about a dozen of such indices, using as variables e, t and 
c. Since t by itself already contains a count of chemical 
elements and  of their topology (see the example of 
K2MgsSil2030 given above) it reflects the main require- 
ments of parsimony as defined by Pauling (1929): 
the polyhedra about all chemically identical cations 
should be chemically similar and similar in the nature 
of the sharing of corners, edges and faces with other 
polyhedra. By subtracting from t the number of 
different chemical elements we are correcting for the 
number of constituents which must be distinct because 
of their chemistry. 

We can subdivide the entries according to the value 
of I t in lavish (I  t > 0.66), intermediate (0.66 > I t > 
0.33) and parsimonious ( I  t < 0.33) structures. The 
parsimonious structures are either simple structure 
types or their superstructures. The intermediate group 
is just that. It contains many of the typical silicate 
minerals. Worth mentioning is the observation that 
partial statistical substitutions of one chemical element 
by another (as often encountered in minerals) can 
quickly increase the lavishness of a structure. Witness 
hexagonal BaTiO 3 which has been shown to be stable 
only if one of the Ti-atom positions is substituted partly 
by Pt. The index I t increases consequently from 0.00 to 
0.33. However, if several sites are uniformly occupied 
by two elements in the same ratio we count this only as 
one element for purposes of counting e [see (A1,Si) in 
sanidine], because statistically all occupants of the 
tetrahedral sites are uniform here. 

The lavish structures, such as Ba2TigO20 with an I t of 
0-90, have a surprisingly large number of either 
topological or crystallographic sites per chemical 
element in the compound. They are lavish whether we 
use I t as defined above, or whether we employ Ic [=(c - 
e)/e], which measures the crystallographic complexity 
of the structure. This is very different for superstruc- 
tures of simple compounds (see meteoritic tridymite) 
where I~ is large, but I t is still zero, because the topology 
of the various crystallographic sites does not vary at 
all. Structural complexity can express itself in very 
different ways. A superstructure of a simple compound 
such as tridymite is geometrically complex (as 
measured by I~) but topologically exceedingly simple. A 
superstructure generated by a stuffing of interstices 
(such as Ba2Ti902o ) is both geometrically and 
topologically complex. Structures with very high values 
of I~ but small values of I t have a good chance of being 
superstructures of simpler types. 

From the data displayed in Table 3 it appears that 
Pauling's (1929) rule V, the rule of parsimony, is not 

very well obeyed by complex ionic crystals in general. 
Thus it differs markedly from the other four rules 
formulated by Pauling (1929) for ionic compounds. 
Those are today still being applied, extended and 
reinterpreted (S truc ture  and  Bond ing  in Crystals ,  
1981). It may be significant that the first edition of 
the Nature  o f  the Chemical  B o n d  (Pauling, 1939) does 
not contain any reference to the rule of parsimony. 
However, it is still being cited in the literature. Bloss 
(1971) restates it as 'The number of types of interstitial 
sites present within a periodically regular packing of 
anions tends to be small'. Compounds such as 
Ba4Ti13030, Ba6Ti17040 and Ba2Ti9020 which can all be 
described as closest packings of O and Ba atoms with 
Ti occupying the octahedral interstices are powerful 
counter examples even to this restated rule of 
parsimony. 

Conclusions 

The topological analysis of complex crystal structures 
is a useful tool for studying the topological symmetry 
of a structure. The absence of topologically equivalent 
but crystallographically inequivalent pairs or groups of 
atoms is an analytical proof that the structure cannot 
possess a higher symmetry. The discovery of such 
equivalent pairs shows that the topological symmetry 
of the structure is higher than the crystallographic 
symmetry observed so far. Such a finding should be a 
stimulus to search for higher space-group symmetries 
in order to avoid the assignments of space groups of 
unnecessarily low symmetry (Marsh & Schomaker, 
1979; Herbstein & Marsh, 1982; Marsh & Herbstein, 
1983). This search for higher symmetries must be 
based mostly on sifting carefully the diffraction 
evidence (Niggli matrix, equivalence of pairs of Fhkl, 
search for reflexions which violate translational sym- 
metries) or else on numerical relations between atomic 
coordinates. 

The application of the topological and geometrical 
indices I t and I c to a number of structures shows that 
we should distinguish between those which are only 
topologically complex and those which are both 
topologically and geometrically complex. A topological 
analysis of selected structures shows that the rule of 
parsimony applies only to the simplest structure types 
and their superstructures but not to complex ionic 
crystals in general. 
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Abstract 

The high-temperature ix' orthorhombic phase of stron- 
tium orthosilicate was studied structurally by single- 
crystal diffractometry at 383 K {a = 5.682 (1), b = 
7 .090(1) ,  c = 9.773 (2) A, V = 3 9 3 . 7 A  3, z = 4, 
space group Pmnb [non-standard setting of Pnma (No. 
62); equivalent positions + (x,y,z; ½ + x, ½ - y ,  ½ + z; 

0108-7681/83/060674-06501.50 

½ - x , y , z ; x ,  ½ + y, ½ - z ) ] , M r =  267.32, Dx = 4.510 
Mg m -3, ~,(Mo Ka)  = 0 . 7 1 0 7 A ,  ~ = 26.6 mm-~}, 
using 741 observed reflexions. Least-squares refine- 
ments were performed on: (i) an ordered model, with Sr 
atoms and SiO4 tetrahedra lying on (100) mirror planes 
(R = 0.060, anisotropic); (ii) a disordered model, with 
atoms statistically distributed between mirror-related 
positions (R = 0.069, isotropic); (iii) a mixed model, 
© 1983 International Union of Crystallography 


